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In this paper n-ary regular division algebras are discussed, which are
satisfying the hyperidentity of paramediality. It is shown that every operation
in n-ary regular paramedial division algebra will be linearly represented over the
same Abelian group. Similar results already obtained for regular medial division
algebras in [1].
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Introduction and Preliminary Notions. A (Q, f ) n-ary groupoid is called
medial, if it satisfies the mediality identity:

f ( f (x11, ...,x1n), ..., f (xn1, ...,xnn)) = f ( f (x11, ...,xn1), ..., f (x1n, ...,xnn)).

Algebra (Q,Σ) is called medial, if it satisifies the mediality hyperidentity [2–4]:

X(Y (x11, ...,x1n), ...,Y (xm1, ...,xmn)) = Y (X(x11, ...,xm1), ...,g(x1n, ...,xmn)).

The (Q, f ) n-ary groupoid is called paramedial, if it satisfies the paramediality
identity:

f ( f (x11, ...,xn1), ..., f (x1n, ...,xnn)) = f ( f (xnn, ...,xn1), ..., f (x1n, ...,x11)).

Algebra (Q,Σ) is called paramedial, if it satisifies the paramediality hyperidentity:

X(Y (x11, ...,xn1), ...,Y (x1m, ...,xnm)) = Y (X(xnm, ...,xn1), ...,g(x1m, ...,x11)).

Some types for paramedial n-ary groupoids are described in [5], and some types
for binary paramedial algebras are described in [6].

A non empty set Q with n-ary operation A is called n-groupoid.
The sequence xn,xn+1, ...,xm is denoted by xm

n , where n, m are natural numbers,
n≤ m. If n = m, then xm

n is the element xn. The sequence xm,xm−1, ...,xn is denoted
by m

n x, where n, m are natural numbers, n ≤ m. If n = m, then m
n x is the element xn.

The sequence a,a, ...,a (m times) is denoted by am.
∗ E-mail: david.harutyunyan96@gmail.com

https://doi.org/10.46991/PYSU:A/2022.56.3.107
david.harutyunyan96@gmail.com


108 HARUTYUNYAN D. N.

D e f i n i t i o n 1. Let (Q,A) be n-groupoid and (Q,B) be m-groupoid. We will
say that (Q,B) is retract of (Q,A), if m ≤ n and there are a1, ...,an−m ∈ Q and
k1, ...,kn−m ∈ 1, ...,n, such that B(xm

1 )=A
(

xk1−1
1 ,a1,x

k2−1
k1+1, ...,x

kn−m−1
kn−m−1+1,an−m,xn

kn−m+1

)
.

Let (Q,A) be an n-groupoid. Denote by Li (an
1) a mapping from Q to Q

such that
Li (an

1)x = A
(
ai−1

1 xan
i+1
)
,

for all x ∈ Q. The mapping Li(an
1) is called the i-translation with respect to an

1.

D e f i n i t i o n 2. Let (Q,A) be an n-groupoid. We will say (Q,A) is division
n-groupoid if Li(an

1) is a surjection for all an
1 ∈ Q and i = 1, ...,n.

It’s easy to see that every retract of paramedial division n-groupoid is also
paramedial.

Let denote by LA
i

(
a|A|1

)
the i-translation of the algebra (Q,Σ) with respect to

element a|A|1 ∈ Q|A|, where |A| is the arity of the operation A.

D e f i n i t i o n 3. The algebra (Q,Σ) is called division algebra, if every LA
i

(
a|A|1

)
is a surjection for all a|A|1 ∈ Q|A|, A ∈ Σ and i = 1, ...,n.

An n-groupoid is called i-regular if

Li(an
1)c = Li(bn

1)c =⇒ Li(an
1) = Li(bn

1),

for all an
1,b

n
1,c ∈ Q. An n-groupoid is called regular if it’s regular for all i = 1, ...,n.

It’s easy to see that every retract of regular n-groupoid is also regular.

The algebra (Q,Σ) is called i-regular, if LA
i

(
a|A|1

)
c = LA

i

(
b|A|1

)
c implies that

LA
i

(
a|A|1

)
= LA

i

(
b|A|1

)
. If (Q,Σ) is i-regular for all i = 1, ..., |A|, then it’s called regular.

D e f i n i t i o n 4. A groupoid (Q,A) is homotopic to a groupoid (Q,B), if
there exist such mappings α,β ,γ from Q to Q that the equality γA(x,y) = B(αx,βy)
is valid for any x,y ∈ Q. Then the triad (α,β ,γ) is a homotopy from (Q,A) to Q,B).
If γ = idQ, then we say that these groupoids are principally homotopic.

D e f i n i t i o n 5. A mapping γ from Q to Q is called a homotopy of a groupoid
(Q,A), if there exist such mappings α,β from Q to Q that the triad (α,β ,γ) is a
homotopy from (Q,A) to (Q,A).

D e f i n i t i o n 6. A mapping φ from Q to Q is a quasiendomorphism of a group
(Q, ·), if

φ(x · y) = φx · (φ1)−1 ·φy

or all x,y ∈ Q, where 1 is the identity of the group (Q, ·).

L e m m a 1. If the group (Q, ·) is principally homotopic to the group (Q,+),
then they are isomorphic and x · y = x+ y+ l for all x,y ∈ Q, where l ∈ Q.
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L e m m a 2. Let φ be a quasiendomorphism of the group (Q, ·), then φ is
endomorphism of the group (Q, ·) if and only if φe = e, where e ∈ Q is the identity of
the group (Q, ·).

L e m m a 3. Any quasiendomorphism φ of a group (Q, ·) has the form
φ = Laφ ′, where Lax = a · x, a ∈ Q, and φ ′ is an endomorphism of the group (Q, ·).

L e m m a 4. Any homotopy α of a group (Q, ·) is a quasiendomorphism
of (Q, ·).

The following results for regular paramedial division binary groupoids and
regular paramedial division algebras were proved in [6].

T h e o r e m 1. A groupoid (G, ·) is a regular paramedial division binary
groupoid if and only if there exists an abelian group (G,+), two surjective
endomorphisms f ,g of (G,+) and an element c ∈ G such that f 2 = g2 and
x · y = f (x)+g(y)+ c for all x,y ∈ G.

T h e o r e m 2. Let (Q;Σ) be a regular paramedial division binary algebra.
Then there exists an abelian group (Q,+) such that every operation A ∈ Σ has the
following representation:

A(x,y) = φAx+ψAy+ tA,

where φA,ψA are surjective endomorphisms of the group (Q,+) such that
φAφB = ψBψA, φAψB = φBψA and ψAφB = ψBφA for all A,B ∈ Σ and tA ∈ Q.

In this paper we generalized those results for n-ary regular paramedial division
groupoids and regular paramedial devision algebras.

Main Results.

T h e o r e m 3. Let (Q,A) be a regular paramedial division n-groupoid.
Then there exists an Abelian group Q(+) and surjective endomorphisms α1, ...,αn,
and a fixed element b ∈ Q such that

A(xn
1) = α1x1 + · · ·+αnxn +b

for all xi ∈ Q, i = 1, ...,n, and where αiα j = αn+1− jαn+1−i for all i, j = 1, ...,n.

P ro o f. The proof is by induction on n.
For n = 2 the assumption follows from Theorem 1. Suppose the assumption

satisfied for natural numbers less than n.
Let us consider the following matrix:

x11 x12 ... x1n

x21 x22 ... x2n

... ... ... ...
xn1 xn2 ... xnn

 ,

and define:
A
({

xn+1−in+1− j
}n

j=1

)
= yi, A

({
xi j
}n

i=1

)
= z j.
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Then we can write paramdeial identity as

A(yn
1) = A(zn

1). (1)

Now let us consider the following matrix:

a a a ... a
... ... ... ... ...
a a a ... a
a x2 x3 ... xn

x1 a a ... a
a a a ... a

 ,

and suppose zi and y j from Eq. (1) have the forms

{
z1 = (an−2x1a) = βx1,

zi = (an−3xia2) = µxi, i 6= 1,


yi = (an) = b, i 6= 2,3,
y2 = (an−1x1) = αx1,

y3 = (n
2xa),

where α,β ,µ are surjections. Thus, from Eq. (1) we get

A
(

b,αx1,
(n

2xa
)
,bn−3

)
= A

(
βx1,

{
µxi
}n

i=2

)
.

Define a binar groupoid B(u,v) = A
(
b,u,v,bn−3

)
, and so (Q,B) will be regular

paramedial division groupoid, because it’s a retract of (Q,A).
Define (n− 1)-ary groupoid C

(
n
2u
)
= A

(
n
2u,a

)
, thus (Q,C) will be regular

paramedial division (n−1)-ary groupoid, because it’s a retract of (Q,A).
From the assumption it follows that there exists (Q,∗) and (Q,⊕)

an Abelian groups such that:

B(u,v) = γu⊕δv⊕d, C(n
2u) = λnun ∗λn−1un−1 ∗ · · · ∗λ2u2 ∗ c,

where γ,δ are surjective endpmorphisms of the group (Q,⊕) such that γ2 = δ 2

and λi, i = 2, ...,n are surjective endomorphisms of the group (Q,∗) such that
λiλ j = λn+2− jλn+2−i.

Making replacements in Eq. (1), we get

B
(

αx1,C
(n

2x
))

= A
(

βx1,
{

µxi
}n

i=2

)
or

γαx1⊕δ (λnxn ∗λn−1xn−1 ∗ · · · ∗λ2x2 ∗ c)⊕d = A
(

βx1,
{

µxi
}n

i=2

)
.

Let hµ be the right inverse of µ , by replacements we obtain

γαx1⊕δ (λnhµxn ∗λn−1hµxn−1 ∗ · · · ∗λ2hµx2 ∗ c)⊕d = A
(
βx1,xn

2
)
. (2)

There exists an element a1 ∈ Q such that γαa1⊕ d = 0⊕, where 0⊕ is the
identity element of the group (Q,⊕). By taking x1 = a1, we get

δ (λnhµxn ∗λn−1hµxn−1 ∗ · · · ∗λ2hµx2 ∗ c) = A
(
βa1,xn

2
)
. (3)
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The retract of (Q,A) groupoid D(xn
2) = A

(
βa1,xn

2

)
is also a regular

paramedial division of the (n− 1)-ary groupoid, so from the assumption we get
that there exists an Abelian group (Q,+) and surjective endomorphisms φi, i = 2, ...,n,
φiφ j = φn+2− jφn+2−i such that D

(
xn

2

)
= φ2x2 + φ3x3 + · · ·+ φnxn + t. So Eq. (3)

will look like

δ (λnhµxn ∗ · · · ∗λ2hµx2 ∗ c) = φ2x2 + · · ·+φnxn + t = φ2x2 + · · ·+φ
′
nxn, (4)

where φ
′
nxn = φxn + t.

Now let put x1 = hβ x1 in Eq. (2), where hβ is the right inverse of β :

γαhβ x1⊕δ (λnhµxn ∗λn−1hµxn−1 ∗ · · · ∗λ2hµx2 ∗ c)⊕d = A
(
xn

1
)
, (5)

and by using Eq. (4) we can rewrite Eq. (5) in the following way:

A
(
xn

1
)
= νx1⊕ (φ2x2 + · · ·+φnxn + t) = νx1⊕

(
φ2x2 + · · ·+φ

′
nxn
)
, (6)

where νx1 = γαhβ x1⊕d.
Now consider the retract E(xn−1

1 ) = A(xn−1
1 ,a), and from the assumption we

have that there exists an Abeilan group (Q,⊗) and µi, i = 1, ...,n− 1, surjective
endomorphisms such that µiµ j = µn− jµn−i and

E(xn−1
1 ) = µ1x1⊗·· ·⊗µn−1xn−1⊗ l, (7)

where l ∈ Q.
Let us fix xn = a in Eq. (6) using Eq. (7), we get

νx1⊕ (φ2x2 + · · ·+φ
′
n−1xn−1) = µ1x1⊗·· ·⊗µ

′
n−1xn−1, (8)

where φ
′
n−1xn−1 = φn−1xn−1 +φ

′
na and µ

′
n−1xn−1 = µn−1xn−1⊗ l.

Put xn−1
3 = an−1

3 . Such that φ3a3 + · · ·+ φ
′
n−1an−1 = 0+, where 0+ is the

identity element of the group (Q,+), we obtain

νx1⊕φ2x2 = µ1x1⊗µ
′
2x2

or
x1⊗ x2 = νhµ1x1⊕φ2h

µ
′
2
x2,

where µ
′
2x2 = µ2x2⊗µ3a3⊗·· ·⊗µn−1an−1 and hµ1 ,hµ

′
2

are right inverses of µ1,µ
′
2

respectively. Thus we have that the group (Q,⊗) is pricnipally homotopic to the group
(Q,⊕), so from Lemma 1, we have

x⊕ y = x⊗ y⊗ f ′. (9)

Now let replace x1 = a1 and xn−1
4 = an−1

4 in Eq. (8) such that νa1 = 0⊕
and φ4a4 + · · ·+φ

′
n−1an−1 = 0+, we get

φ2x2 +φ3x3 = µ2x2⊗µ
′
3x3.

Then again from Lemma 1 we obtain

x⊗ y = x+ y+ f ′′, (10)

so from Eqs. (9) and (10) we obtain

x⊕ y = x+ y+ f . (11)
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Using Eq. (11) in Eq. (6), we obtain

A(xn
1) = νx1 +φ2x2 + · · ·+φ

′
nxn + f = ψ1x1 + · · ·+ψnxn +h, (12)

where ψ1, ...,ψn are surjections and h∈Q, and we can assume that ψi0 = 0, i = 1, ...,n.
Let us proof that ψi, i = 1, ...,n, are surjective endomorphisms and

ψiψ j = ψn+1− jψn+1−i. Consider the following matrix:

i



. .

. .

. .
... u ... v ...

. .

. .

. .



j k

,

where xi j = u, y jk = v and all other elements are equal to 0+. Thus we have

{
yn+1−i = ψn+1− ju+ψn+1−kv+h,
ys = h,s 6= i,


z j = ψiu+h,
zk = ψiv+h,
zs = h,d 6= j,k,

hence

A(yn
1) = A

(
hn−i,ψn+1− ju+ψn+1−kv+h,hi−1),

A(zn
1) = A

(
h j−1,ψiu+h,hk− j−1,ψiv+h,hn−k),

and

A
(
hn−i,ψn+1− ju+ψn+1−kv+h,hi−1)= A

(
h j−1,ψiu+h,hk− j−1,ψiv+h,hn−k).

Thus, using Eq. (12) we obtain

n−i

∑
s=1

ψsh+ψn+1−i(ψn+1− ju+ψn+1−kv+h)+
n

∑
s=n+2−i

ψsh+h =

j−1

∑
s=1

ψsh+ψ j(ψiu+h)+
k−1

∑
s= j+1

ψsh+ψk(ψiv+h)+
n

∑
s=k+1

ψsh+h.

From this identity we obtain

ψn+1−i(ψn+1− ju+ψn+1−kv+h) = ψ j(ψiu+h)+ψk(ψiv+h)+ r,

where r ∈ Q. By making substitutions u = hψn+1− j u and v = hψn+1−k v−h, where
hψn+1− j and hψn+1−k are the right inverses of ψn+1− j and ψn+1−k, we get
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ψn+1−i(u+ v) = ψ j(ψihψn+1− j u+h)+ψk(ψihψn+1−k v+h)+ r

or
ψn+1−i(u+ v) = θu+σv,

where θ and σ are surjections. Thus from Lemma 4 it follows that ψi, i = 1, ...,n,
are quasiendomorphisms. Since ψi0+ = 0+, from Lemma 2 it follows that ψi

is endomorphism of the group (Q,+).
Fixing v = 0+, we obtain

ψn+1−iψn+1− ju+ψn+1−ih = ψ jψiu+ψ jh+ψkh+ r, (13)

and if we fix u = 0+, we get

ψn+1−ih = ψ jh+ψkh+ r. (14)

Using Eq. (14) in Eq. (13), we get

ψn+1−iψn+1− ju = ψ jψiu

for all i, j = 1, ...,n.

T h e o r e m 4. Let (Q,Σ) be a regular paramedial division algebra. Then there
exists an Abelian group (Q,+) such that every operation A ∈ Σ has the representation

A
(

x|A|1

)
= φ

A
1 x1 + · · ·+φ

A
|A|x|A|+bA,

where φ A
i are surjective endomorphisms of the group (Q,+) such that

φ A
i φ A

j = φ A
n+1− jφ

A
n+1−i for all i, j = 1, ...,n and bA ∈ Q.

P ro o f. From Theorem 3 we know that for every A ∈ Σ there exists group
(Q,+A) and surjective endomorphisms such that

A(x|A|1 ) = φ
A
1 x1 +A ...+A φ

A
|A|x|A|+A bA.

Let A,B ∈ Σ. From the hyperidentity of paramediality we have

φ
A
1

(
φ

B
1 x11 +B ...+B φ

B
|B|x|B|1 +B bB

)
+A ...+A φ

A
|A|

(
φ

B
1 x1|A|+B ...+B φ

B
|B|x|B||A|+B bB

)
+AbA = φ

B
1

(
φ

A
1 x|B||A|+A ...+A φ

A
|A|x|B|1 +A bA

)
+B ...+B φ

B
|B|
(
φ

A
1 x1|A|+A ...

+Aφ
A
|A|x11 +A bA

)
+B bB.

Fix xi j = 0+B , where xi j 6= x11 and xi j 6= x|B||A|, then we get

φ
A
1
(
φ

B
1 x11 +B bB

)
+A φ

A
|A|

(
φ

B
|B|x|B||A|+B bB

)
+A fA =

φ
B
1
(
φ

A
1 x|B||A|+A cA

)
+B φ

B
|B|

(
φ

A
|A|x11 +A dA

)
+B fB,

where cA,da, fA, fB are elements from Q. From which we obtain

αx11 +A βx|B||A| = γx|B||A|+B θx11,

where α = φ A
1 RB

bB
φ B

1 ,β = RA
fA

φ A
|A|R

B
bB

φ B
|B|,γ = φ B

1 RA
cA

φ A
1 and θ = RB

fB
φ B
|B|R

A
dA

φ A
|A|

are surjections, where RB
bB
,RB

fB
are the right translations of the group (Q,+B)

and RA
fA
,RA

cA
,RA

dA
are the right translations of the group (Q,+A). From this we obtain

x11 +A x|B||A| = θhαx11 +B γhβ x|B||A|,
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where hα and hβ are the right inverses of the α and β . This means that the group
(Q,+A) and the group (Q,+B) are principally homotopic and from Lemma 1 we get

x+A y = x+B y+B gAB,

x+B y = x+A y+A rAB,

where gAB,rAB ∈ Q.
Let us fix an operation B ∈ Σ, by this we will fix the group (Q,+B) = (Q,+)

and for every operation A ∈ Σ we obtain

A
(

x|A|1

)
= φ

A
1 x1 +A ...+A φ

A
|A|x|A|+A bA = φ

A
1 x1 + · · ·+φ

A
|A|x|A|+uA, (15)

where uA ∈ Q, and for every φ A
i , i = 1, ..., |A|, we get

φ
A
i (x+ y) = φ

A
i (x+A y+A rAB) = φ

A
i x+A φ

A
i y+A φ

A
i rAB =

φ
A
i x+φ

A
i y+ v = φ

A
i x+ψ

A
i y,

where ψA
i is a surjection from Q to Q. It follows from Lemma 4 that φ A

i , i = 1, ...|A|,
are quasiendomorphisms of the group (Q,+), and from Lemma 3 we have that
φ A

i = RaµA
i , where µA

i is an endomorphism of the group (Q,+) and Ra is the right
translation of the group (Q,+) by the element a ∈ Q. Hence we obtain

A(x|A|1 ) = φ
A
1 x1 + · · ·+φ

A
|A|x|A|+uA = µ

A
1 x1 + · · ·+µ

A
|A|x|A|+ vA,

where µA
i , i = 1, ..., |A|, are sujective endomorphisms of the group (Q,+) and vA ∈ Q.

Similar to the proof of the Theorem 3 we can show that µA
i µA

j = µA
n+1− jµ

A
n+1−i.
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D. N. HAROW�YOWNYAN

�EGOWLYAR PARAMEDIAL BA	ANOWMOV HANRAHA
IVNERI MASIN

Ays hodva�owm ditarkvowm en n-te�ani �egowlyar paramedial

ba�anowmov hanraha�ivner�  cowyc � trvowm, or n-te�ani �egowlyar

paramedial ba�anowmov hanraha�vi yowraqan�yowr gor�o�ow�yown kareli �

g�aynoren nerkayacnel nowyn Abelyan xmbi mijocov: �egowlyar paramedial

ba�anowmov hanraha�ivneri hamar nmanatip ardyownqner arden isk

stacvel en [1]-owm:

Д. Н. АРУТЮНЯН

ОБ АЛГЕБРАХ С РЕГУЛЯРНЫМИ ПАРАМЕДИАЛЬНЫМИ
ДЕЛЕНИЯМИ

В этой статье изучаются n-арные регулярные алгебры с делением,
удовлетворяющие гипертождеству парамедиальности. Показано, что
каждая операция в n-арной регулярной парамедиальной алгебре с делением
имеет линейное представление над одной и той же абелевой группой.
Аналогичные результаты для регулярных медиальных алгебр с делением
уже получены в [1].


