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In this paper n-ary regular division algebras are discussed, which are
satisfying the hyperidentity of paramediality. It is shown that every operation
in n-ary regular paramedial division algebra will be linearly represented over the
same Abelian group. Similar results already obtained for regular medial division
algebras in [1].

https://doi.org/10.46991/PYSU:A/2022.56.3.107
MSC2010: Primary: 03C05; Secondary: 03C85, 20N05.

Keywords: hyperidentities, regular division groupoids, paramedial groupoids,
n-ary groupoids, quasiendomorphisms.

Introduction and Preliminary Notions. A (Q, f) n-ary groupoid is called
medial, if it satisfies the mediality identity:

f(f(xlla'“vxln)a "'af(xnlv "'7xnn)) = f(f(xll7---7xnl)7 "'af(xlna ---;xnn))-
Algebra (Q,X) is called medial, if it satisifies the mediality hyperidentity [2—4]:

XY (X115 X10) 5 oy Y (1 s ey Xomn ) ) = Y (X (X115 o3 X1 )y o0 8 (X1t oo ey Xomn ) ) -
The (Q, f) n-ary groupoid is called paramedial, if it satisfies the paramediality
identity:

f(f(xll 5 ...,X,Z]), ...,f(X]n, -~-7xnn)> = f(f(xnm <oy Xnl )7 "'7f(x1n7 ...,X]l))-
Algebra (Q,X) is called paramedial, if it satisifies the paramediality hyperidentity:

XY (X11yeeesXn1) ey Y (X1 ooy Xum)) = Y (X (Xmy o5 X1 )5 ooy & X1y ooy X11))-

Some types for paramedial n-ary groupoids are described in [5], and some types
for binary paramedial algebras are described in [6].

A non empty set Q with n-ary operation A is called n-groupoid.

The sequence x,,xp11,...,Xn is denoted by x)', where n, m are natural numbers,
n <m. If n = m, then x is the element x,,. The sequence x,,, X1, ...,X, is denoted
by "x, where n, m are natural numbers, n < m. If n = m, then /'x is the element x,,.
The sequence a,a, ...,a (m times) is denoted by a,.
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Definition 1. Let (Q,A) be n-groupoid and (Q,B) be m-groupoid. We will

say that (Q,B) is retract of (Q,A), if m < n and there are ay,...,ay_, € Q and

my k-1 ko—1 Konm—1 N
ki,...kn-m€1,...,n, suchthat B(x|') =A (x1 NI T PIRE ARPY e

Let (Q,A) be an n-groupoid. Denote by L;(a) a mapping from Q to Q
such that
Li(d))x=A(aq) 'xd}y,),
for all x € Q. The mapping L;(a’) is called the i-translation with respect to af.

Definition 2. Let (Q,A) be an n-groupoid. We will say (Q,A) is division
n-groupoid if Li(d') is a surjection for all d} € Q andi=1,...,n.

It’s easy to see that every retract of paramedial division n-groupoid is also

paramedial.

Let denote by L4 (a‘fx') the i-translation of the algebra (Q,X) with respect to

element a‘lA‘ € 0", where |A| is the arity of the operation A.

Definition 3. The algebra (Q,X) is called division algebra, if every L <a‘1A|)
is a surjection for all a‘lA‘ e AeXandi=1,...n
An n-groupoid is called i-regular if
Li(ay)c = Li(bY)c = Li(a}) = Li(b}),

for all a},b7,c € Q. An n-groupoid is called regular if it’s regular for all i = 1,...,n.
It’s easy to see that every retract of regular n-groupoid is also regular.

The algebra (Q,X) is called i-regular, if L} (a‘lA‘) c=14 (bllA‘> c implies that
LA (a‘f\') =1 (b‘lA‘) JIf(Q,X) is i-regular foralli = 1,...,|A

, then it’s called regular.

Definition 4. A groupoid (Q,A) is homotopic to a groupoid (Q,B), if
there exist such mappings ., 3,7y from Q to Q that the equality YA(x,y) = B(ax, By)
is valid for any x,y € Q. Then the triad (a,,7) is a homotopy from (Q,A) to Q,B).
If y=idg, then we say that these groupoids are principally homotopic.

Definition 5. A mapping y from Q to Q is called a homotopy of a groupoid
(Q,A), if there exist such mappings o, 3 from Q to Q that the triad (o, f3,Y) is a
homotopy from (Q,A) to (Q,A).

Definition 6. A mapping ¢ from Q to Q is a quasiendomorphism of a group
(Qa')’ lf
O(x-y) = ox- (1) ¢y

orall x,y € Q, where 1 is the identity of the group (Q,-).

Lemma 1. If the group (Q,-) is principally homotopic to the group (Q,+),
then they are isomorphic and x-y =x+y+1 for all x,y € O, where | € Q.
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Lemma 2. Let ¢ be a quasiendomorphism of the group (Q,-), then ¢ is
endomorphism of the group (Q,-) if and only if pe = e, where e € Q is the identity of
the group (Q,-).

Lemma 3. Any quasiendomorphism ¢ of a group (Q,-) has the form
0 =L,9', where Lix=a-x, a € Q, and ¢' is an endomorphism of the group (Q,").

Lemma 4. Any homotopy o of a group (Q,-) is a quasiendomorphism
0f(Q7 )

The following results for regular paramedial division binary groupoids and
regular paramedial division algebras were proved in [6].

Theorem 1. A groupoid (G,-) is a regular paramedial division binary
groupoid if and only if there exists an abelian group (G,+), two surjective
endomorphisms f,g of (G,+) and an element ¢ € G such that f*> = g* and
x-y=f(x)+g(y)+cforallxyecgG.

Theorem 2. Let (Q;X) be a regular paramedial division binary algebra.
Then there exists an abelian group (Q,+) such that every operation A € ¥ has the
following representation:

A(X,y) = ¢Ax+ YAy +14,
where Qa,Wa are surjective endomorphisms of the group (Q,4+) such that
$a08 = VWA, PaVWp = PpWa and Yadp = YpPa for all A,B € T and iy € Q.

In this paper we generalized those results for n-ary regular paramedial division
groupoids and regular paramedial devision algebras.

Main Results.

Theorem 3. Let (Q,A) be a regular paramedial division n-groupoid.
Then there exists an Abelian group Q(+) and surjective endomorphisms ay, ..., 0,
and a fixed element b € Q such that

A(x}) =oqx;+ -+ 0yx, +b
forallx; € Q,i=1,...,n, and where 0;0t; = 01— jOpy1—; foralli,j=1,...,n.
Proof. The proof is by induction on 7.
For n = 2 the assumption follows from Theorem 1. Suppose the assumption

satisfied for natural numbers less than .
Let us consider the following matrix:

X111 X12 ... Xin
X21 X22 ... X2p

)
Xnl Xn2 -« Xun

and define:

A({xn+17in+lfj};:1) =Yi A({Xij}?zl) =z;j.



110 HARUTYUNYAN D. N.

Then we can write paramdeial identity as

A(y1) = A1) (1)

Now let us consider the following matrix:

a a a .. a
a a a .. a
a x x3 ... x|’
X1 a a .. a
a a a .. a

and suppose z; and y; from Eq. (1) have the forms

Yi= (an) = b7 l# 2737
71 = (" %x1a) = Bxi, ya = (a"'x1) = axy,
zi=(a"xia®) = ux;, i # 1, y3 = (5xa),

where a, B, 1 are surjections. Thus, from Eq. (1) we get
A (b, axy, (gxa) , b”_3) =A <[3x1, {“xi}?:z) .

Define a binar groupoid B(u,v) = A(b, u,v, b”_3), and so (Q, B) will be regular
paramedial division groupoid, because it’s a retract of (Q,A).

Define (n— 1)-ary groupoid C(5u) = A(5u,a), thus (Q,C) will be regular
paramedial division (n — 1)-ary groupoid, because it’s a retract of (Q,A).

From the assumption it follows that there exists (Q,*) and (Q,®)
an Abelian groups such that:

B(u,v) = yu® 6v@dd, C(5u) = Apty * Ay 1tty_1 % - - - * Aaun * c,

where y,8 are surjective endpmorphisms of the group (Q,®) such that > = §2

and A;, i = 2,...,n are surjective endomorphisms of the group (Q,x) such that
Aidj = Anio—jAnio—i.
Making replacements in Eq. (1), we get

B(axl,C(SX)) =A (B% {ux,-};.’:2)

Yox1 © 6 (Apxy % Ay 1Xp— %+ x Apxp % ¢) D d :A(Bxla {/'in}:l:2>~

or

Let hy, be the right inverse of i, by replacements we obtain
yoxy @ 8 (Anhyxy * Ay 1huXn—1% - % hohyxo x¢) ®d = A(ﬁxl ,x’g) . 2)
There exists an element a; € Q such that yoa; & d = Og, where Og is the
identity element of the group (Q,®). By taking x; = a;, we get

O (Anhyxy % Ay_1hyxy_1 % -+ - % Aahyxs % c) :A(Bal,xg). 3
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The retract of (Q,A) groupoid D(x3) = A(Baj,x}) is also a regular
paramedial division of the (n — 1)-ary groupoid, so from the assumption we get
that there exists an Abelian group (Q,+) and surjective endomorphisms ¢;,i =2, ...,n,

$i9; = Oni2—jPni2—i such that D(x5) = ¢ox + @3x3 + -+ + @ux, + 1. So Eq. (3)
will look like

O(Anhyxy* % Lohyxo xc) = Goxo + -+ Py +1 = Poxo + -+ - + ¢,;x,,, 4)
where (P;,Xn = ¢px,+1.
Now let put x; = hgx; in Eq. (2), where /g is the right inverse of 3:
Yohgxy @ O (AnhyXn * Ay1hyXn 1 %% Aahyxy xc) ©d = A (x’f), (5)
and by using Eq. (4) we can rewrite Eq. (5) in the following way:
A = v @ ($oxa -+ Pt +1) = vy @ (Poxa + -+ 9,3, (6)
where vx; = yathgx ©d.
Now consider the retract E(x] ') = A(¥{"',a), and from the assumption we

have that there exists an Abeilan group (Q,®) and y;, i = 1,...,n — 1, surjective
endomorphisms such that y;u; = W, ;u,—; and

EM™) = mn ®- ® ty 13,1 ®1, (7)
where [ € Q.
Let us fix x, = a in Eq. (6) using Eq. (7), we get
VA B (Gox + - By X ) = WX @ @ Ly X1 8)

where q),;_lxn,l = Qp_1Xp—1+ (j),;a and ,ur/l_lxn,l =un—1x,_1 ®I.
Put X' = a%!. Such that ¢sa3 + -+ ¢, ,a,—1 = 04, where 0, is the
identity element of the group (Q,+), we obtain
VX1 B Gy = Hix1 @ UoXy
or
X] ®xp = Vhy,x1 ® ¢2huéxz,

where ,uéxz = pXo @ U3az R -+ R Up—1a,—1 and hunhﬂ; are right inverses of ,ul,/.t;

respectively. Thus we have that the group (Q, ®) is pricnipally homotopic to the group
(Q,®), so from Lemma 1, we have

XPy=xR0y®f. ©)
Now let rell)lace x; = a; and xﬁ’l = aﬁ’l in Eq. (8) such that va; = Og
and ¢gas +---+¢,_ja,—1 =04, we get
$2x2 + P3x3 = HpXa @ U3X3.
Then again from Lemma 1 we obtain
x®@y=x+y+f" (10)
so from Egs. (9) and (10) we obtain
x®y=x+y+f. (11)
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Using Eq. (11) in Eq. (6), we obtain
AW) = VX1 oxs 4+ 0+ f = YiXi + -+ Y+, (12)

where Y1, ..., ¥, are surjections and /& € Q, and we can assume that y;0 =0,i=1,...,n.

Let us proof that y;, i = 1,...,n, are surjective endomorphisms and
ViV = Wni1— jWut1—. Consider the following matrix:

j k

where x;; = u, y;x = v and all other elements are equal to 0. Thus we have

2j = Yiu+h,
Ynt1—i = Ynt1—jU + ll/n+]_kv+h, = ]l/iv_|_h7
vy =h,s # i, zg=h,d # j,k,
hence
A(VY) :A(hniia Yyt 1—ju+ I,l/nﬂ,kv—i-h,h"*l),
A = AW i+ b Ty 4 i),
and

AR Y ju+ Y v+ 1) = AW g T g+ B ).

Thus, using Eq. (12) we obtain

Y Wb+ Wi (Wit W v+ h)+ Y, Wh+h=
s=1 s=n+2—i
j_l k—1 n
vih+v(Wu+h)+ Y wh+w(yv+h)+ Y wh+h.
|

s= s=j+1 s=k+1

From this identity we obtain
Vi1 —i (W1 jut + Yo —v + h) = Wi(Wiu+ h) + Wi (Wiv + h) + 1,

where r € Q. By making substitutions u = hy,,, ;u and v = hy, , ,v—h, where
hy,,,_; and hy, , _, are the right inverses of y,+1—; and Y1, we get
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Vir1—i(u+v) = lllj(lllihllfwrl—ju +h)+ ‘l’k(‘lfih%+|_k"+h) +r
or
Yuri—i(u+v)=0u-+ov,

where 0 and ¢ are surjections. Thus from Lemma 4 it follows that y;, i =1,...,n,
are quasiendomorphisms. Since y;0; = 04, from Lemma 2 it follows that y;
is endomorphism of the group (Q,+).

Fixing v = 0, we obtain

Vit 1—iVnt1—jit+ Wpr1—ih = W Yu+ yih+ yih+r, (13)
and if we fix u = 04, we get
Yni1-ih = Yih+ Yih+r. (14)
Using Eq. (14) in Eq. (13), we get
Ynt1-iWnt1-ju = Yjyiu
foralli,j=1,...,n. O

Theorem 4. Let (Q,X) be a regular paramedial division algebra. Then there
exists an Abelian group (Q,+) such that every operation A € X has the representation

A
A (x‘l |) = ¢f‘x1 +--+ ¢Q|X\A| +ba,
where ¢f are surjective endomorphisms of the group (Q,+) such that
Or ot = o 00 foralli,j=1,...nand by € Q.

Proof. From Theorem 3 we know that for every A € X there exists group
(Q,+4) and surjective endomorphisms such that

A
A(X‘l |) = (])f‘xl +4...424 ¢Q|X\A| +aba.
Let A, B € ¥. From the hyperidentity of paramediality we have

o7 (¢1Bx11 +p...+8 <P|%\X\B|1 +8 bB) +a.ta (PQ| <¢1Bx1\A| +B...+8 ¢§|X\B||A\ +3 bB)
+abs = OF <¢fx\3|\A| FA A ¢|éx\x|3\1 +4 bA) +B...+B ¢|%\ (¢1AX1\A| +4

+A¢|/};\X11 +4ba) +5bp.
Fix x;; = 0 ,, where x;; # x11 and x;; #X|BHA\’ then we get

o7 (dfx11 +5bg) +4 (15\/};\ (¢|BB‘X|BHA| +5 bB) +afa=

OF (91 x5 +a ca) +5 Oy (¢Q\X11 +a dA) +8 /3,
where ca,d,, fa, fp are elements from Q. From which we obtain
ox11 +a BX|p|ja| = YX|B|ja] +B Ox11,

_ _ pA pA _ A pA _ A pA
where a = ¢{'R} ¢7,B = R}, ‘A|REB¢§|,)/ = ¢/R) ¢f' and 6 = R?Bq)‘%‘RdA "
are surjections, where RgB,R?-B are the right translations of the group (Q,+5)
and R?-A,RA

ey ,RQ‘A are the right translations of the group (Q,+4). From this we obtain

x11 44 X||ja| = Ohax11 +8 YhgX|p)a|,
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where hq and hg are the right inverses of the « and 8. This means that the group
(Q,+4) and the group (Q,+p) are principally homotopic and from Lemma 1 we get

X+AY=Xx+BY+BE&AB,
X+pYy=x+aY+atas,

where gap,rap € Q.
Let us fix an operation B € X, by this we will fix the group (Q,+5) = (Q,+)
and for every operation A € ¥ we obtain

A (x‘{") = 9101 et O XA Taba = Ot o R Fua,  (15)
where us € Q, and for every ¢,i = 1,...,]A|, we get
0 (x+y) = ¢ (x+ay+aras) = ¢ x+4 08y +a 0 ran =
ofx+ ¢ty +v=ofx+yly,

where 1//,’-4 is a surjection from Q to Q. It follows from Lemma 4 that ¢;‘, i=1,..]A],
are quasiendomorphisms of the group (Q,+), and from Lemma 3 we have that
o = Ra,LLiA, where u;“ is an endomorphism of the group (Q,+) and R, is the right

translation of the group (Q,+) by the element a € Q. Hence we obtain
A
A(x‘l |) = ¢fx1 + - +¢|[/;\X\A\ +us = ,ufxl + - +NQ|X‘A| +v4,

where u#, i =1,...,|A], are sujective endomorphisms of the group (Q, +) and v4 € Q.

Similar to the proof of the Theorem 3 we can show that uiA u;‘ = u;‘ 1 jug‘ e U
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% L. NUCNFE-8NFL3UL

NEGNFL3UN MUNUUBYPUL AUFULAFUNY STLAUSUChJIULEh UWUPL

Wu hnpuwdnid ghypwpynid G n-ptinubth  ntgniyjjup  ywpwdtinhuy
pwdwinuiny hwipwhwyhydipp b gnyg L yppynd, np z#-iptinuih ntignyjup
wyuwpwitinhwy pudwinuing hwipwhwoyh jnipupwbsjnip gnpdnnnipynil jupth &
gowytnptb bbpluywmgity tnyb Wpkjjub odph dhongny: (Rhgnijup yyupudtinhuyg
pwdwinuiny hwbpwhwyhybtiph hwdiwp 0dwbunphy wpyniopbbp wpntb huly
upuigytip G [1]-nn:

. H. APYTIOHAH

OB AJI'EBPAX C PEI'VJIAPHBIMU ITAPAME/JVAJIbBHBIMU
JAEJEHNAMU

B s10ii cTaThe M3ydaroTcs n-apHblE PEryJspHBbIE AJITreOPBI C JeJIeHUEM,
VIOBJIETBOPSIONINE TUIEPTOXKAECTBY mapameaunaiabuoctu. llokazano, d[To
KazK/1asl ollepaliys B H-apHOil PeryJisipHoii apaMe ualibHOi ajaredpe ¢ jieJieHueM
UMeeT JIMHEHHOe IIpe/CcTaBIeHne HaJll OJHON M TOH »Ke abejeBOil T'PYIIIOI.
AHajioruvHbIE PE3yJIBTATHI JJIsl PETYIISPHBIX MEJIUAJBHBIX ajredp ¢ JIeJIEHuEM
yKe moJjtydesst B [1].



